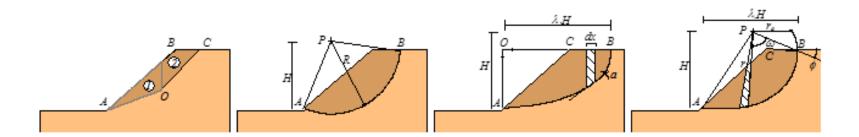
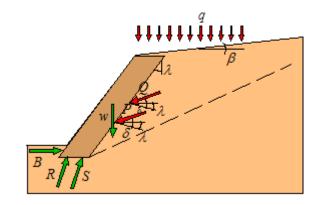
Journée Technique CFG

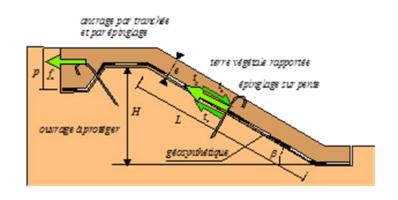
IFSTTAR le 23 mars 2016

Stabilité sur pente des dispositifs de protection avec géosynthétiques


Daniel POULAIN

Irstea Bordeaux




Stabilité des ouvrages de protection sur talus

Stabilité d'ensemble

Stabilité couche mince

Stabilité des couches minces sur pentes

Contexte

- Ouvrages concernés
 - Support sol naturel
 - Sur géomembrane (DEG)
- Approche générale de la stabilité sur pente

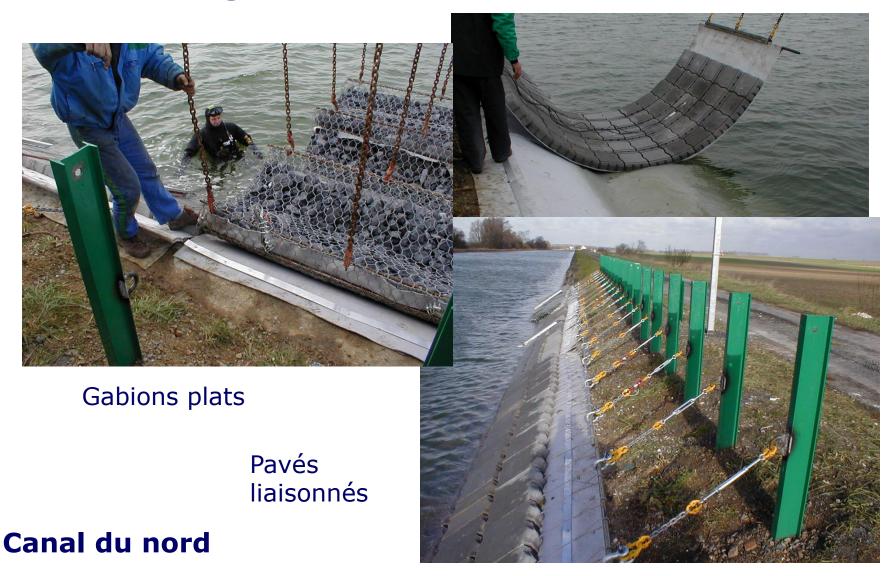
La norme XP G 38-067

- Principes de calcul
- Coefficients de sécurité

Les ouvrages concernés

Systèmes de protection contre l'érosion

Conteneur matelas



Confinement à poches

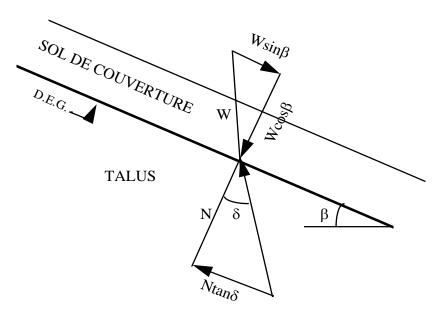
Confinement géoalvéolaire

Les ouvrages concernés (suite..)

Journée Technique CFG - 23 mars 2016

Les ouvrages concernés (suite....)

Dispositifs d'étanchéité par géomembranes sur pente



Journée Technique CFG – 23 mars 2016

Les ouvrages concernés (suite..)

Principe général de calcul et importance des conditions hydrauliques pour la stabilité d'une couche sur pente infinie

Sol sec ou drainé

$$FS = \frac{N \tan \delta}{W \sin \beta} = \frac{W \cos \beta \tan \delta}{W \sin \beta} = \frac{\tan \delta}{\tan \beta}$$

Sol saturé

$$FS = \frac{(\gamma_{sat} - \gamma_w) \tan \delta}{\gamma_{sat} \tan \beta} = \frac{\gamma'}{\gamma_{sat}} \frac{\tan \delta}{\tan \beta}$$

Hypothèses pour une approche de stabilité

Le sol support

- Caractéristiques géométriques
 - Pente, hauteur
 - Largeur de crête disponible
- Perméabilité
- Caractéristiques mécaniques

Le complexe géosynthétique

- Caractéristiques de toutes les interfaces
 - Géosynthétiques/géosynthétiques
 - Géosynthétique/sol
- Caractéristiques mécaniques des géosynthétiques

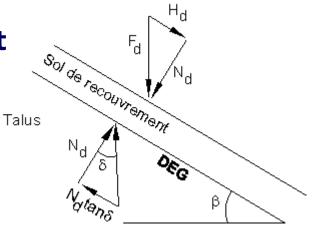
Le sol de couverture

- Perméabilité
- Caractéristiques mécaniques

Les conditions hydrauliques

Drainage ou non des interfaces

Norme XP G 38-067 Stabilisation d'une couche de sol mince sur pente


Norme expérimentale publiée en juillet 2010

Principes généraux

Domaine d'application

- Pente de talus constante (pas de risberme)
- Epaisseur inférieure à 5% de la longueur du talus
- Contrainte normale inférieure à 20 kPa

Principe de fonctionnement

 F_d : Valeur de calcul de l'action conformément à l'expression 8.2.2 (poids de la structure de recouvrement + surcharges)

 H_d : Valeur de calcul de la composante tangentielle au plan de glissement de l'action F_d , $H_d = F_d \cdot \sin \beta$.

 N_d : Valeur de calcul de la composante normale au plan de glissement de l'action F_d , $N_d = F_d \cdot \cos \beta$.

 $N_{\text{d}}.\text{tan}\delta$: Valeur de calcul de la résistance au cisaillement au niveau du plan de glissement

Données relatives à l'ouvrage

Données géométriques

- Régularité de l'état de surface (<3 cm sur 4 m)
- Incertitude sur données géométriques considérée nulle

Conditions hydrauliques

- Ne sont pas traités les cas où une pression hydraulique demeure à l'interface étudiée
 - Absence d'eau
 - Drainage suffisant pour éviter une mise en pression
- Calcul ne prenant pas en compte de risberme

Données relatives aux matériaux

Matériaux naturels

- Poids volumique humide
- Poids volumique saturé
- Frottement interne long terme
- Cohésion à long terme

Complexe géosynthétique

- Caractéristiques de frottement d'interface
 - Plan incliné pour les faibles épaisseurs de couche (<75 cm) –NF EN ISO 12957-2
 - Boîte de cisaillement pour des épaisseurs plus élevées –NF EN ISO 12957-1

Géosynthétique de stabilisation

Résistance à la traction à court terme et long terme

Les actions

- Conformément à la norme NF EN 1990, on distingue
 - Les actions permanentes (G)
 - Les actions variables (Q)
 - Les actions accidentelles (A)
- Actions principalement pondérales
 - Matériaux de couverture (volume et densité)
 - Surcharge dus à la neige ou glace (actions variables)
 - Circulation d'engin (action accidentelle)
- Butée de pied négligée (pas traitée dans la norme)
- Actions dues à l'eau limitées au changement de poids volumique

Les situations de calcul

- Phase de construction
- Phase d'exploitation
- Combinaison d'actions
 - Prise en compte des combinaisons les plus défavorables
 - Actions géotechniques doivent être calculées à partir des mêmes valeurs représentatives des propriétés de base

Par exemple : Même poids volumique pour le sol de couverture pour les actions stabilisatrices et déstabilisatrices

Règles générales de justification des ouvrages

Applicable aux projets relevant de la catégorie géotechnique 2

Vérifications minimales à réaliser

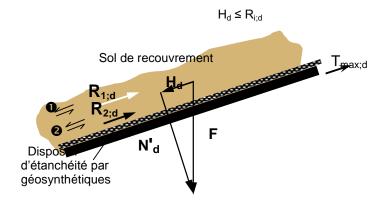
- Stabilité au cisaillement des matériaux de recouvrement
- Stabilité de la couche de recouvrement sur le dispositif géosynthétique
- Résistance au cisaillement des interfaces internes des géocomposites
- Résistance à la traction du géosynthétique de renforcement (si nécessaire)
- Résistance de l'ancrage

Facteurs de sécurité dans les situations classiques (approche 2) – Sols

- Actions (jeu A1)
 - Permanentes
 - Poids du sol sur la pente: 1,35 (action défavorable)
 - Poids du sol sur la tranchée d'ancrage : 1
 - Poids des GTX : Négligé en général
 - Temporaires
 - Poids de la neige :
 - 1,5 (action défavorable) sur la pente
 - **0** sur tranchée d'ancrage
- Paramètres de sol (jeu M1)
 - Poids volumique : 1
 - Angle de frottement : 1
 - Cohésion : 1

Facteurs de sécurité dans les situations classiques (approche 2) - Résistances

- Résistance du sol (jeu R2)
 - Résistance au glissement du sol : 1,1
- Résistances des géosynthétiques
 - Résistance au cisaillement interne : 1,35
 - Résistance au glissement d'interface : 1,35
 - Résistance en traction caractéristique : 1,25

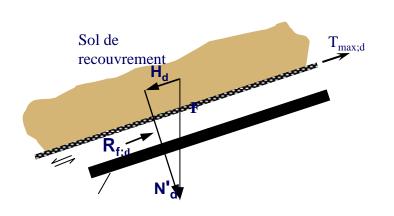

Stabilité de la couche de recouvrement

En cas d'intéraction sol-géosynthétique

$$R_d = \frac{1}{\gamma_{R;f}} \left(N'_d \tan \delta_{a;k} \right)$$

En cas d'intéraction sol-sol

$$R_d = \frac{1}{\gamma_{R;h}} \left(N'_d \tan \delta_{a;k} + L_a.c'_k \right)$$


Journée Technique CFG - 23 mars 2016

Résistance à la traction du géosynthétique de renforcement

- Détermination de T_{max;d}
 - $T_{\text{max};d=} H_d R_{f;d}$
 - Avec $R_{f;d} = \frac{1}{\gamma_{R;f}} (N'_d \tan \delta_{b;k})$
- Résistance ultime de traction
 - T _{max;d} ≤ Rt;d

Plan de glissement

• Avec
$$R_{t;d} = \frac{R_{t;k}}{\Gamma_{end}\Gamma_{flu}\Gamma_{\deg}\gamma_{M;t}}$$

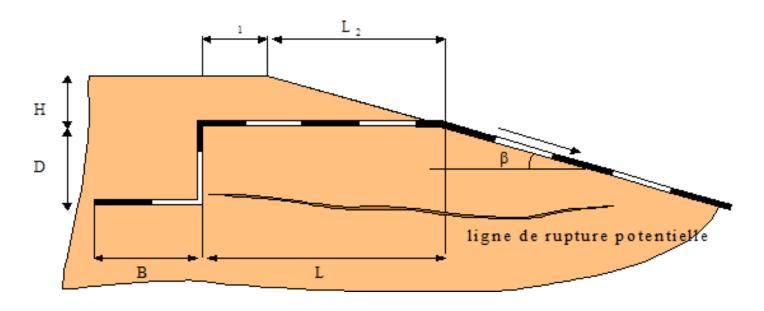
D'où :
$$R_{t,k} \ge T_{max,d} \Gamma_{end} \Gamma_{flu} \Gamma_{deg} \gamma_{M,t}$$

Valeurs forfaitaires du coefficient d'endommagement Γ_{end}

Tableau A.1. Valeurs forfaitaires du coefficient Γ_{end}

Conditions de mise en œuvre	Peu sévères	Moyennement sévères	Sévères	Très sévères
Coefficient ρ_{end}	1,15	1,25	1,50	

Tableau A.2. Degré de sévérité des conditions de mise en œuvre


Remblai	Sol fin, sable	Grave sableuse ou sol graveleux alluvionnaires	Grave sableuse ou sol graveleux concassés	Sols à gros éléments, roulés ou anguleux	
Classification NF P 11-300	A, B, D1	B, D	B, D	C, CA, CB, D	
Energie de compactage	Conditions de mise en oeuvre				
Moyenne	Peu sévères	Moyennement sévères	Sévères	Très sévères (Non recommandé)	

Valeurs par défaut des coefficients de fluage Γ_{flu} et de dégradation chimique Γ_{deg}

Polymère	Valeur par défaut pour	
	Γ_{flu}	
PP / PE	6	
PEHD	5	
PET	3	
PVA	3	
AR	3	

рН	Classe de durée d'utilisation	PET	PEHD / PP	PA
4 < pH ≤ 8	1 à 3	1.05	1.05	1.10
	4 ou 5	1.20	1.30	-
8 < pH ≤ 9	1 à 3	1.10	1.05	1.10
	4 ou 5	1.30	1.30	-

Conception d'un ancrage

Ancrage simple (sans tranchée)

- Prise en compte du frottement sur une seule face
- Ancrage en tranchée
 - Ajout du frottement sur les 2 faces de la tranchée (longueurs D et B)

Conclusion

Norme NF G38-067

- Calcul de stabilité d'une couche mince sur un complexe géosynthétiques
 - Matériaux non saturés
 - Butée de pied non prise en compte
- Détermination de la résistance à la traction du géosynthétique de renforcement si nécessaire

• Eléments importants pour la stabilité d'un Dispositif géosynthétique sur pente

- Conditions hydrauliques
- Détermination des angles de frottement aux interfaces et dans les sols supports
- Ne pas oublier la stabilité d'ensemble ni celle du sol de couverture